If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+22X+16=0
a = 1; b = 22; c = +16;
Δ = b2-4ac
Δ = 222-4·1·16
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{105}}{2*1}=\frac{-22-2\sqrt{105}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{105}}{2*1}=\frac{-22+2\sqrt{105}}{2} $
| -2x+2(-4x+17)=-86 | | X^3+4x-21=0 | | 15+8x=7x−8 | | 7x+4(2x-13)=113 | | 79-3y=7 | | 5–2t=3 | | 4(-3x+2)=10 | | g-43/5=10 | | 4x+6=8-(2x-5) | | 0.9x(x+200)=0.8x+22 | | X^2−3x+2=0 | | 12-3j=3 | | 7x+2=5-(3x-8) | | v+20/7=5 | | 3(m-2)-6=15 | | q/3+11=13 | | 2x+51=951 | | 3y–4=2 | | (4x+3)×3=2-3×(2x+5) | | 2+3*4=35 | | Y=(1/x+1/4)1/2 | | 7x+2=17x-23 | | 3k+12/2=9 | | X-6=15y | | 108=6x-3(-2x-4) | | G(x)=2x2+3x+1 | | (2y+4)²+3=0 | | 2z–1=5 | | 12m2+5m-13=0 | | 3(x-8)/2=9 | | -0.2x^2+0.1x=0.04 | | (E+4)x6=54 |